The incubation of 13α,17-dihydroxystemodane with Cephalosporium aphidicola.

نویسندگان

  • Braulio M Fraga
  • Ricardo Guillermo
  • Melchor G Hernández
  • María C Chamy
  • Juan A Garbarino
چکیده

The biotransformation of 13α,17-dihydroxystemodane (3) with the fungus Cephalosporium aphidicola afforded 13α,17,18-trihydroxystemodane (4), 3β,13α,17-tri-hydroxystemodane (5), 13α,17-dihydroxy-stemodan-18-oic acid (6), 3β,11β,13α,17-tetra-hydroxystemodane (7), 11β,13α,17,18-tetrahydroxystemodane (8) and 3β,13α,17,18-tetra-hydroxystemodane (9). The hydroxylation at C-18 of the substrate points to a biosynthetically-directed transformation, because aphidicolin (2) is hydroxylated at this carbon. However, the C-3(β) and C-11(β) hydroxylations seem to indicate a xenobiotic biotransformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Di-And Tri-Hydroxylated Kaurane Derivatives From Microbial Transformation Of Ent-Kaur-16-En-19-Ol By Cephalosporium Aphidicola And Their Allelopathic Activity On Lactuca Sativa (Lettuce)

The use of microorganisms to induce chemical modifications in organic molecules is a very useful tool in organic synthesis, to obtain biologically active substances. The fungus Cephalosporium aphidicola is known by its ability to hydroxylate several skeleton positions of many classes of organic compounds. In this work, the microbial transformation of ent-kaur-16-en-19-ol (1) by C. aphidicola, a...

متن کامل

Synthesis and Biological Evaluation of Triazolyl 13α-Estrone-Nucleoside Bioconjugates.

2'-Deoxynucleoside conjugates of 13α-estrone were synthesized by applying the copper-catalyzed alkyne-azide click reaction (CuAAC). For the introduction of the azido group the 5'-position of the nucleosides and a propargyl ether functional group on the 3-hydroxy group of 13α-estrone were chosen. The best yields were realized in our hands when the 3'-hydroxy groups of the nucleosides were protec...

متن کامل

Bio-Catalytic Structural Transformation of Anti-cancer Steroid, Drostanolone Enanthate with Cephalosporium aphidicola and Fusarium lini, and Cytotoxic Potential Evaluation of Its Metabolites against Certain Cancer Cell Lines

In search of selective and effective anti-cancer agents, eight metabolites of anti-cancer steroid, drostanolone enanthate (1), were synthesized via microbial biotransformation. Enzymes such as reductase, oxidase, dehydrogenase, and hydrolase from Cephalosporium aphidicola, and Fusarium lini were likely involved in the biotransformation of 1 into new metabolites at pH 7.0 and 26°C, yielding five...

متن کامل

Microbial Transformation of Antifertility Agents, Norethisterone and 17α-Ethynylestradiol

The microbial transformation of oral contraceptive norethisterone (1) by Cephalosporium aphidicola afforded an oxidized metabolite, 17α-ethynylestradiol (2), while the microbial transformation of 2 by Cunninghamella elegans yielded several metabolites, 19-nor-17α-pregna-1,3,5 (10)trien-20-yne-3,4,17β -triol (3), 19-nor-17α-pregna-1,3,5 (10)-trien-20-yne-3,7α ,17β -triol (4), 19nor-17α-pregna-1,...

متن کامل

Synthesis of novel 13α-estrone derivatives by Sonogashira coupling as potential 17β-HSD1 inhibitors

Novel 13α-estrone derivatives were synthesized by Sonogashira coupling. Transformations of 2- or 4-iodo regioisomers of 13α-estrone and its 3-methyl ether were carried out under different conditions in a microwave reactor. The 2-iodo isomers were reacted with para-substituted phenylacetylenes using Pd(PPh3)4 as catalyst and CuI as a cocatalyst. Coupling reactions of 4-iodo derivatives could be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 17 2  شماره 

صفحات  -

تاریخ انتشار 2012